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Shil’nikov homoclinic chaos is intimately related to type-III intermittency
in isolated rabbit arteries: Role of nitric oxide

D. Parthimos, D. H. Edwards, and T. M. Griffith*
Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park

Cardiff CF14 4XN, United Kingdom
~Received 30 December 2002; published 23 May 2003!

We provide experimental evidence for the existence of Shil’nikov homoclinic chaos in the fluctuations in
flow which can be observed in isolated perfused rabbit ear arteries, and establish a close association between
homoclinicity and type-III Pomeau-Manneville intermittent behavior. The transition between the homoclinic
scenario and type-III intermittency is clarified by a mathematical model of the arterial smooth muscle cell.
Simulations of the effects of nitric oxide~NO! synthesized by the vascular endothelium on these patterns of
behavior closely match experimental observations.
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The cellular mechanisms that regulate tone in the smo
muscle cells of the arterial wall are intrinsically nonline
and generate rhythmic contractile activity~a phenomenon
known as vasomotion! that can be classified as chaot
@1–3#. Indeed, previous studies have shown that a variety
established ‘‘routes to chaos,’’ including period doublin
quasiperiodicity, and Pommeau-Manneville intermitten
types I and III, can be observed in the oscillatory behavio
isolated rabbit ear arteries activated by histamine@4–7#.
Type-I intermittency is associated with a reverse tang
~saddle node! bifurcation in which the eigenvalues of th
Floquet matrix of a fixed point pass through the unit circ
whereas type-III intermittency arises at a subcritical peri
doubling bifurcation@8,9#. In both cases, the trajectories
the underlying attractor diverge from an unstable equilibri
point and are subsequently reinjected in the vicinity of
equilibrium to repeat the process. Constructions of the n
maximum return maps for the oscillations in flow that res
from vasomotion have confirmed the universal features
these Pommeau-Manneville intermittency classes@6,7#.
However, such an analysis reflects the local stability cha
teristics of the equilibrium point, rather than the nature of
reinjection regime that underpins the intermittent behav
Here, we broaden the picture by studying the global stab
properties of intermittent vasomotion in the vicinity of a h
moclinic fixed point.

A homoclinic trajectoryf (x,t) is such that the ‘‘inset’’ to
a fixed point of an attractor,xo , is the same as the ‘‘outset
from the same point. It, therefore, obeys the rule t
f (x,t)→xo for t→`, t→2`. Homoclinic bifurcations are
structurally unstable under Peixoto’s theorem and are th
fore destroyed by small perturbations@10#. Consequently,
they are more difficult to identify than local bifurcation
since knowledge of the global properties of the phase sp
trajectories is required. Homoclinicity was initially studie
by Rössler who identified ‘‘spiral-’’ and ‘‘screw-’’ type ho-
moclinic scenarios@11#. Systematic characterization wa
however, provided by Shil’nikov who studied homoclinici
around a saddle-focus equilibrium point@12#. In this sce-
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nario, reinjection occurs along a well-defined vector asso
ated with a real system eigenvalue, with ejection from
vicinity of the equilibrium subsequently effected on a spi
path located on a transverse plane. A necessary cond
for this mechanism is that the saddle-focus indexd
5uRe(l2)/l1u,1, wherel1 andl2 are the leading eigenval
ues (l1 determining the rate of approaching andl2 deter-
mining the rate of leaving the stable point!. If this Shil’nikov
condition is satisfied, an infinite number of nonperiodic tr
jectories coexist in the vicinity of a homoclinic trajector
biasymptotic to the saddle focus. This scenario has been
documented in physicochemical systems such as
Belouzov-Zhabotinski reaction, semiconductors, lasers,
hydrodynamics@13–16#, and there are limited experimenta
reports of such behavior in the biological context, includi
human brain activity and the respiratory cycle of rats@17–
19#.

An example of oscillations in flow induced by histamin
is presented in Fig. 1~a!. To establish the nature of the glob
dynamics of the system, the attractor underlying this ti
series was reconstructed by a time-delay embedding of
experimental signal, and is seen to consist of large-amplit
trajectories that are injected along a straight line into
neighborhood of a saddle equilibrium point, after which th
follow an outward spiral path constrained on a plane int
secting the path of injection@Fig. 1~b!#. This scenario is in
agreement with reinjection around a homoclinic point on
pleated slow manifold@Fig. 1~c!#. This mechanism is high-
lighted in the magnified image of the experimental sign
shown in Fig. 1~a!, which demonstrates that reinjection ca
be approximated by a convergent nonoscillatory exponen
that reflects the existence of a negative real eigenvalue
the eigenvector in the reinjection direction. In contrast,
dynamics of ejection exhibits exponential oscillatory dive
gence associated with a pair of conjugate complex eigen
ues with positive real part such that its eigenvectors lie
the spiral plane. Estimates of these eigenvalues were
tained asl1;21.53 andl2,3;0.4760.29i by exponential
fitting. Importantly, the ratiod5uRe(l2)/l1u,1 satisfies the
condition prescribed by Shil’nikov for the existence of h
moclinic chaos.

The endothelial cells that line the lumen of the arter
wall release nitric oxide~NO! which exerts an importan
©2003 The American Physical Society22-1
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FIG. 1. ~a! Oscillations in flow induced by 2.5mM histamine in an isolated rabbit artery. A large-amplitude oscillation~dashed line!
directs the time series into the vicinity of a weakly unstable locus. The time series subsequently exits this region of reduced ac
oscillations of exponentially increasing amplitude~dotted line!. ~b! The attractor reconstructed by time-delayed embedding of the ex
mental trace (t55 sec) illustrates how trajectories are correspondingly injected into the vicinity of an equilibrium point in the dir
indicated by the dashed arrow and ejected in the direction of the dotted arrow.~c! Schematic of the pleated slow manifold often associa
with the reinjection mechanism of a homoclinic trajectory. The Poincare´ planeP is drawn transverse to the stable manifold~i.e., the family
of the reinjection trajectories! of the attractor a short distance from a saddle focus. The points where the reinjection trajectory a
divergent oscillatory trajectory cross the Poincare´ plane are indicated by closed and open circles, respectively.Experimental methods: Rabbit
ear arteries~1–1.5 cm long, ca. 150mm in diameter! were perfusedin situ with oxygenated (96%O2/5%CO2) Holman’s buffer~composition
in mM: 120 NaCl, 5 KCl, 2.5 CaCl2 , 1.3 NaH2PO4 , 25 NaHCO3 , 11 glucose, and 10 sucrose,pH 7.2–7.4! at 35°, as previously describe
@1,6,7#. An average flow was set at 0.5 ml/min, and fluctuations in flow resulting from intrinsic rhythmic vasomotor activity were mon
continuously by a Transonic systems type 2N flow probe that was included in series with the circuit immediately proximal to the arte
probe utilizes an ultrasonic transit-time principle whereby volume flow through its sensing window is measured independent of
velocity profile. Superimposed variations in flow due to the perfusion pump were not evident on the experimental signals, since t
damped by an air-filled compliance chamber connected to the circuit via a sidearm proximal to the flow probe. Time series were sa
120 Hz. Since arterial vasomotion is characterized by oscillatory components in the range 0.001–1 Hz@1#, by the Nyquist theorem this
sampling rate is adequate to avoid aliasing.
051922-2
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FIG. 2. Experimental vasomotion in an isolated rabbit ear artery perfused with 2.5mM histamine~a! under control conditions and~b! in
the presence of 50mM NG-nitro-L-arginine methyl ester~L-NAME!, a compound that inhibits endothelial NO synthesis.~c! Attractor
reconstructed by a time-delayed embedding of trace~a!. The trajectories of the large-amplitude oscillations are shown in gray, and tho
the reinjection regime in black, and follow the directions of the dotted and dashed arrows, respectively.~d! The Poincare´ section through the
reconstructed attractor indicating the crossings of reinjection trajectories by closed circles and crossings of trajectories leaving th
the unstable manifold as open circles. The arrow identifies the approximate location of the equilibrium point.~e! and~f! correspond to~c! and
~d!, respectively, for trace~b!.
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modulatory effect on the contractile behavior of vascu
smooth muscle cells. However, this endogenous relaxing
tor does not affect the intrinsic complexity of vasomotion
assessed by calculation of the Grassberger-Proccacia co
tion dimension@1–3#. Representative examples of oscillato
activity in an isolated rabbit artery before and after suppr
sion of NO synthesis are shown in Figs. 2~a! and 2~b!, re-
spectively. Figure 2~a! reproduces the general features of F
1~a!, whereas Fig. 2~b! illustrates a subharmonic bifurcatio
consisting of the alternating expanding and contacting mo
that typify type-III Pomeau-Manneville intermittency@6,8,9#.
The attractor in Fig. 2~c!, reconstructed from Fig. 2~a!, is
dynamically equivalent to that shown in Fig. 1~b!, consisting
of large-amplitude trajectories injected into the neighborho
of an equilibrium point, which subsequently diverge in
spiral fashion. The attractor of vasomotion after inhibition
NO synthesis@Fig. 2~e!# is dominated by large-amplitud
wandering trajectories, indicating a change in the stabi
characteristics of the equilibrium point around which the h
moclinic point shown in Fig. 2~d! was constructed. Thes
conclusions are supported by inspection of the Poincare´ sec-
tions of the reinjection trajectories on a transverse plane
ing just above the equilibrium point or its ghost@analogous
to planeP in Fig. 1~c!#. Since the reinjection trajectorie
05192
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follow approximately straight lines as a consequence of
Shil’nikov condition, the Poincare´ section essentially mirrors
the edge of the pleat manifold overlying the homoclinic r
injection focus. Thus, the homoclinic case presented in F
2~d! shows an edge that reinjects trajectories always to
left of the equilibrium point~which can be identified ap
proximately by the small-amplitude region of the corr
sponding time series and is indicated by an arrow!. This
configuration confirms homoclinicity of ‘‘spiral type’’ as
characterized by Ro¨ssler@11#. Figure 2~f! shows the Poincare´
section for Fig. 2~b!. It is evident that reinjection now occur
along two distinct lines~sequences of closed circles!, which
result from an apparent bifurcation of the original simp
pleat manifold. Note that localization of the equilibrium
point is not possible in this case, supporting the assump
that it has become unstable in all directions and no lon
maintains the Shil’nikov condition for homoclinicity.

To gain insights into the dynamical basis of the transiti
from homoclinicity to intermittency, associated with the su
pression of NO synthesis evident in Fig. 2, simulations w
performed with a previously developed mathematical mo
of arterial vasomotion~see the Appendix!. The model gener-
ates irregular rhythmic activity through the nonlinear inte
action of intracellular and membrane oscillators that gov
2-3
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FIG. 3. Four simulations clarifying the transition from oscillatory behavior of the type illustrated in Fig. 2~a! to the type-III intermittent
dynamics of Fig. 2~b! on reducing the parameterB @Eqs.~A1a! and~A1b!, Appendix# from 540 to 516. This parameter governs the rate
uptake of Ca21 from the cytosol into intracellular stores, which is the dominant mechanism through which NO modulates contractile
in rabbit arteries@25#. In case~a!, where the equilibrium point is strongly attractive in the direction of reinjection, the dynamics is sim
homoclinic trajectory that intersects the Poincare´ section in the vicinity of the point indicated by a solid arrow. In case~b!, where the
dynamics is clearly chaotic, the homoclinic reinjection is extended along the edge of a pleat manifold@compare with Fig. 2~d!#. The center
of the four-dimensional saddle is indicated by a solid arrow. By further reducing parameterB in case~c!, the equilibrium~indicated by a
dashed arrow! becomes unstable in all directions and consequently repels the trajectories that converge on a period-2 limit cycle. T
where the two folds of the new cycle intersect the Poincare´ plane are indicated by closed and open circles highlighted by pairs of s
arrows. The period-2 bifurcation dynamics subsequently becomes unstable via a global bifurcation, producing divergent alternatin
ing and contracting waveforms of varying duration that are characteristic of type-III intermittency~d!. The stable period-2 points of th
Poincare´ section of case~c! are now converted into distributions of points indicated by double-edged arrows@compare with Fig. 2~f!#. The
trajectories of the four-dimensional system were visualized as a projection onto the plane depicting@Ca21# in the cell cytoplasm agains
@Ca21# in intracellular stores; corresponding Poincare´ sections show intersections on the plane defined by membrane potential and@Ca21#
in intracellular stores. Reinjection and ejection crossings of the Poincare´ plane are indicated by closed and open circles, respectively.
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cyclic release of Ca21 from internal stores and transmem
brane influx of extracellular membrane Ca21 and employs
four key control variables, selected on the basis of phar
cological experiments that have previously characteri
histamine-induced vasomotion in rabbit ear arteries. Th
variables are@Ca21# in the cytosolx, @Ca21# in intracellular
storesy, cell membrane potentialz, and the open state prob
ability of Ca21-activated K1 channels (w), with changes in
cytosolic@Ca21# being equated with force development via
‘‘latch-bridge’’ model of the contractile apparatus of smoo
muscle cells@4#. Although not represented by independe
dynamic variables, the model also incorporates Na1-Ca21

exchange, Ca21 efflux via the membrane adenosine tripho
phatase~ATP! pump and other ion transport systems. Sim
05192
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lations with this model reproduce a wide spectrum of expe
mental observations including~i! the effects of interventions
that modulate the functionality of Ca21 stores and membran
ion channels,~ii ! paradoxes such as the unpredictable d
action of Ca21 antagonists and low extracellular@Na1#,
which can either abolish vasomotion or promote the appe
ance of large-amplitude oscillations, and~iii ! period-
doubling, quasiperiodic, and intermittent routes to cha
@1,2,4#.

In vascular smooth muscle cells, NO activity ca
lower cytosolic@Ca21# by stimulating Ca21 extrusion from
the cell via the Na1/Ca21 exchanger and the membran
Ca21-ATPase pump@20–22#, in addition to promoting se-
questration of Ca21 within intracellular stores by inhibiting
2-4
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SHIL’NIKOV HOMOCLINIC CHAOS IS INTIMATELY . . . PHYSICAL REVIEW E 67, 051922 ~2003!
Ca21 release from stores and enhancing store uptake
Ca21 from the cytosol@23–25#. As the latter mechanism
appears to dominate in rabbit arteries@25#, in the present
study we have modeled the effect of NG-nitro-L-arginine me-
thyl ester~L-NAME! by assuming that it simply reduces th
term associated with store uptake, i.e., coefficientB in Eqs.
~A1a-b!, while maintaining all other coefficients in the mod
system constant during simulations~see the Appendix!. Fig-
ure 3 illustrates four time series generated by graded cha
of B whose attractors and associated Poincare´ sections clarify
the dynamic mechanisms that allow the emergence of ty
III intermittency. Figure 3~a! presents a case of homoclinicit
with large-amplitude oscillations being reinjected into the
cinity of a saddle-node instability. Following an initial redu
tion in B, the system contains a subset of an infinite num
of chaotic trajectories regulated by a single equilibrium po
located at the center of a high-dimensional saddle. This
troduces an unstable limit cycle that surrounds the sad
focus and produces a mixture of large- and small-amplit
waveforms@Fig. 3~b!#. Further suppression of NO synthes
eliminates the central homoclinicity and gives prominence
an unstable large-amplitude oscillatory cycle@Fig. 3~c!#, with
the dynamics ultimately undergoing the subharmonic bif
cation that characterizes type-III intermittency@Fig. 3~d!#.

The local stability characteristics of the model we
evaluated by linearization of the system equations, with
corresponding Jacobian matrix giving the associated eig
values ~see the Appendix and Table I!. These calculations
confirm that the Shil’nikov condition for homoclinicity is

TABLE I. Eigenvalues of the equilibrium points correspondin
to the simulations of Fig. 3.

l1 l2 l3 l4

~a! 212.5 3.914.5i 4.124.7i 2.1
~b! 27.1 3.313.4i 3.123.2i 1.1
~c! 1.2 3.113.6i 3.123.6i 1.2
~d! 3.7 2.413.5i 2.323.2i 1.4
05192
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satisfied only for the simulations shown in Figs. 3~a! and
3~b!, whereas in Figs. 3~c! and 3~d! the equilibrium point
becomes unstable in all directions and no trajectories e
its vicinity. Although inhibition of NO synthesis induced
transition from homoclinicity to type-III intermittency, both
experimentally and in simulations, it should be noted tha
is also occasionally possible to detect type-III intermitten
in the behavior of isolated arteries in the presence of ba
NO activity @6#. The theoretical model would predict that i
such arteries, enhancement of NO activity by additio
pharmacological stimulation of the endothelium~e.g., by
agents such as acetylcholine!, which would be equivalent to
increasing coefficientB, would promote the appearance
homoclinicity.

In summary, the present study has added Shil’nikov
moclinic dynamics to the patterns of vasomotion that can
observed in isolated arteries and has identified a close a
ciation with type-III intermittency. To our knowledge, ho
moclinicity has not previously been linked to type-III inte
mittency, although several studies have associated
homoclinic scenario with type-I Pomeau-Manneville inte
mittency or crisis-induced intermittency in physical syste
such as electrical circuits@26#, chemical reactions@27,28#,
particle physics@29,30#, and flow dynamics@31#. In vivo,
vasomotion is thought to enhance microvascular mass tr
port, promote lymphatic drainage, and maintain tissue pe
sion when supply pressure is low, e.g., during haemorrha
shock@32–34#. While simple sinusoidal perfusion has bee
shown to preserve renal function when aortic blood flow
surgically restricted@35#, a specific role for more complex
nonlinear patterns of response may be to allow the system
select between patterns of behavior which confer additio
physiological benefit@36#. This hypothesis may be particu
larly relevant in the homoclinic scenario, where an infin
sequence of saddle-node and period-doubling bifurcati
and their corresponding unstable trajectories coexist in
vicinity of the homoclinic singularity. It remains to be dete
mined if the ability to select such patterns of response
impaired in disease states where NO activity may be
pressed.
APPENDIX

Time gradients of the four interdependent dominant cellular parameters that regulate cytosolic Ca21 in rabbit vascular
smooth muscle cells are described by the following system of differential equations as presented in Ref.@4#.
~i! Intracellular oscillator:

Free@Ca21# in the cytosol

dx

dt
5A01A12GCa

Constant Ca21

influx through
receptor operated

channels

Ca21 release
from InsP32

sensitive stores

z2zCa1

11e2~z2zCa2
!/RCa

Ca21 influx
through voltage

operated channels

1GNa/Ca

x

x1xNa/Ca
~z2zNa/Ca!

Na1/Ca21

exchange

2B
xn

xn1xb
n

uptake
into stores

1C
ym

ym1yc
m

Ca21 induced
Ca21 release

~CICR!

xp

xp1xc
p2DxqS 11

z2zd

Rd
D

Ca21

extrusion

1 Ly

leak
from
stores

. ~A1a!
2-5
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@Ca21# in intracellular stores
dy

dt
5B

xn

xn1xb
n

uptake
into stores

2C
ym

ym1yc
m

CICR

xp

xp1xc
p2 Ly

leak
from
stores

. ~A1b!

(ii) Membrane oscillator:
Relationship between ion fluxes and membrane potential

dz

dt
5gF 22GCa

z2zCa1

11e2~z2zCa2
!/RCa

Ca21 influx
through VOCC

2GNa/Ca

x

x1xNa/Ca
Na1/Ca21

exchange

~z2zNa/Ca!2Gkw~z2zK!
K1 efflux G . ~A1c!

Open state probability ofKCa channels

dw

dt
5lS S

~x1xw!2

~x1xw!21be2~z2zCa3
!/RK

Ca21 and voltage
activation

2w

decay
D . ~A1d!
t

s
rs
ls

en
e

ls

lues
nd
Parametric values for Eqs.~A1! maintained constan
throughout the simulations were

A01A1 : 0.475mM/sec GCa: 16.425mM/V sec
GNa/Ca: 43.8mM/V sec xb : 4.47mM
C: 6250mM sec21 yc : 8.9 mM
q: 2 D: 6.2mM12q/sec
L: 0.025 sec21 g: 0.34 V/mM
GK : 73 mM/V sec l: 15
S: 1 xw : 0.5 mM
b: 0.7 mM2

Variablesx and y are in mM, and z in volts. The value of
coefficientB ~in mM sec21! was varied in simulations and i
therefore given at the relevant location in the text. Reve
potentials and Hill coefficients of individual ion channe
and transport mechanisms are given in Ref.@4#. Note that the
complexity of the model was slightly reduced in the pres
study compared to its original formulation by omitting th
contributions of the Na1/K1-ATPase and chloride channe
to membrane potential.

The equilibrium points (x* ,y* ,z* ,w* ) of the system sat-
isfy the equations
J.

05192
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dx

dtU
~x* ,y* ,z* ,w* !

5
dy

dtU
~x* ,y* ,z* ,w* !

5
dz

dtU
~x* ,y* ,z* ,w* !

5
dw

dt U
~x* ,y* ,z* ,w* !

50. ~A2!

Linearization of Eq.~A1a!: dx/dt5 f x(x,y,z,w) around the
equilibrium (x* ,y* ,z* ,w* ) gives

dx̄

dt
5

] f x~¯ !

]x
x̄1

] f x~¯ !

]y
ȳ1

] f x~¯ !

]z
z̄1

] f x~¯ !

]w
w̄,

~A3!

wherex̄5x2x* , ȳ5y2y* , z̄5z2z* , w̄5w2w* . A simi-
lar procedure for the other variables provides the eigenva
specifying the stability characteristics of the system arou
the equilibrium point (x* ,y* ,z* ,w* ) via the Jacobian:

J53
] f x~¯ !

]x

] f x~¯ !

]y
¯ ¯

] f y~¯ !

]x

] f y~¯ !

]y
¯ ¯

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

4
~x* ,y* ,z* ,w* !

. ~A4!
.
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@11# O. E. Rössler, Bull. Math. Biol.39, 275 ~1977!.
@12# L. P. Shil’nikov, Soc. Math. Dokl.6, 163 ~1965!.
@13# F. Argoul, A. Arneodo, and P. Richetti, J. Chim. Phys. Phy

Chim. Biol. 84, 1367~1987!.
@14# T. W. Carr, L. Billings, I. B. Schwartz, and I. Triandaf, Physic

D 147, 59 ~2000!.
@15# R. Herrero, R. Pons, J. Ferjas, F. Pi, and G. Orriols, Phys. R

E 53, 5627~1996!.
@16# M. J. Ablowitz, J. Hammack, D. Henderson, and C. M

Schober, Phys. Rev. Lett.84, 887 ~2000!.
@17# G. V. Wallenstein, J. A. S. Kelso, and S. L. Bressler, Physica

84, 626 ~1995!.
@18# J. A. S. Kelso and A. Fuchs, Chaos5, 64 ~1995!.
@19# M. Sammon, J. R. Romaniuk, and E. N. Bruce, J. Ap

Physiol.75, 912 ~1993!.
@20# K. Furukawa, Y. Tawada, and M. Shigekawa, J. Biol. Che

263, 8058~1988!.
@21# K. Furukawa, N. Ohshima, Y. Tawada-Iwata, and M

Shigekawa, J. Biol. Chem.266, 12 337~1991!.
@22# L. M. Popescu, C. Panoiu, M. Hinescu, and O. Nutu, Eur

Pharmacol.107, 393 ~1985!.
@23# M. Hirata, K. P. Kohse, C. H. Chang, T. Ikebe, and F. Mura
05192
-

v.

.

.

.

,

J. Biol. Chem.25, 1268~1990!.
@24# J. Z. Yu, D. X. Zhang, A. P. Zou, W. B. Campbell, and P. L. L

Am. J. Physiol.279, H873 ~2000!.
@25# R. A. Cohen, R. M. Weisbrod, M. Gericke, M. Yaghoubi, C

Bierl, and V. M. Bolotina, Circ. Res.84, 210 ~1999!.
@26# M. S. Baptista and I. L. Caldas, Physica D132, 325 ~1999!.
@27# P. Richetti, F. Argoul, and A. Arneodo, Phys. Rev. A34, 726

~1986!.
@28# H. Herzel, P. Plath, and P. Svensson, Physica D48, 340~1991!.
@29# S. V. Prants, Phys. Rev. E61, 1386~2000!.
@30# C. L. Pando, G. Perez, and H. A. Cerdeira, Phys. Rev. E48,

196 ~1993!.
@31# A. E. Abasaeed and S. S. E. H. Elnashaie, Chaos, Soli

Fractals9, 455 ~1998!.
@32# J. A. Schmidt, M. Intaglietta and P. J. Borgstro¨m, J. Appl.

Physiol.73, 1077~1992!.
@33# T. W. Secomb, M. Intaglietta, and J. F. Gross, Prog. Ap

Microcirc. 15, 49 ~1989!.
@34# T. C. Skalak, G. W. Schmid-Scho¨nbein, and B. W. Zweifach,

Microvasc. Res.28, 95 ~1984!.
@35# B. Nafz, J. Stegemann, M. H. Bestle, N. Richter, E. Seelige

Schimke, H. W. Reinhardt, and P. B. Persson, Circulation101,
553 ~2000!.

@36# D. Parthimos, D. H. Edwards, and T. M. Griffith, Cardiovas
Res.31, 388 ~1996!.
2-7


